EE 505 Lecture 8

Clock Jitter Statistical Circuit Modeling

Review from last lecture

Windowing - a strategy to address the problem of requiring precisely an integral number of periods to use the DFT for Spectral analysis?

- Windowing is sometimes used
- Windowing is sometimes misused

Review from last lecture Windowing

Windowing is the weighting of the time domain function to maintain continuity at the end points of the sample window

Well-studied window functions:

- Rectangular (also with appended zeros)
- Triangular
- Hamming
- Hanning
- Blackman

Review from last lecture Comparison of 4 windows

Review from lastecturparison of 4 windows

Review from last lecture

 Preliminary Observations about Windows- Provide separation of spectral components
- Energy can be accumulated around spectral components
- Simple to apply
- Some windows work much better than others

But - windows do not provide dramatic improvement and ...

Review from last lecture
Comparison of 4 windows when sampling hypothesis are satisfied

Review from last lecture

Comparison of 4 windows

Review from last lecture
 Preliminary Observations about Windows

- Provide separation of spectral components
- Energy can be accumulated around spectral components
- Simple to apply
- Some windows work much better than others

But - windows do not provide dramatic improvement and can significantly degrade performance if sampling hypothesis are met

Review from last lecture
 Quantization Effects

time and amplitude depicted
Zero-order sample/hold on DAC or zero-order hold on ADC interpreted output DAC Assume DAC will be used to generate a continuous time signal Assume DAC is driven by a clock of period $\mathrm{T}_{\text {CLK }}$
DAC inputs will be a discrete sequence $\bar{X}\left(t_{k}\right)=\left\langle x_{\text {quant }}\left(t_{k}\right)\right\rangle$
DAC inputs can change only at times t_{k}
The duration of each DAC input depends upon system
With zero-order S / H, it is assumed that the DAC output remains constant between transaction times $x_{\text {OUT }}(t)=x_{\text {quant }}\left(t_{k}\right) \quad t_{k} \leq t<t_{k+1}$

Review from last lecture Quantization Effects

(time and amplitude depicted)
16,384 pts res $=4$ bits

Is this signal band limited?

Review from last lecture Spectral Characteristics of DAC

$\mathrm{T}_{\text {CLOCK }} \longrightarrow 1 \mid$
 Sampling Clock
$\xrightarrow[\text { DFT CLOCK }]{\longrightarrow}$
DFT Clock

Review from last lecture Spectral Characteristics of DAC

Review from last lecture

Summary of time and amplitude quantization assessment

Time and amplitude quantization do not introduce harmonic distortion

Time and amplitude quantization do increase the noise floor

Duty Cycle Effects on Spectral

What type of DAC output is desired?

Duty Cycle Effects on Spectral Performance of DACS
 (File: DAC Quantization with RTZ.m)

Impulse Output

Zero-order Sample and Hold (100\% duty cycle)

Duty Cycle Effects on Spectral Performance of DACS
 (File: DAC Quantization with RTZ.m)

Return to Zero

Consider

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{P}}=1 \\
& \mathrm{~N}_{\mathrm{SIG}}=11 \\
& \mathrm{~N}_{\mathrm{CL}}=70 \\
& \mathrm{f}_{\mathrm{sig}}=50 \\
& \mathrm{n}_{\mathrm{res}}=10
\end{aligned}
$$

Thus, $\mathrm{f}_{\mathrm{CLK}}=\mathrm{f}_{\text {SIG }}\left(\mathrm{N}_{\mathrm{CL}} / \mathrm{N}_{\text {SIG }}\right)=318 \mathrm{~Hz}$

The fft spectrum should be nominally symmetric around $\mathrm{f}_{\mathrm{CLK}} / 2=159 \mathrm{~Hz}$ so will get only the fundamental, second harmonic, and third harmonic in the fundamental frequency half-period which occurs at fft coefficient number 36 and the clock frequency will be at fft coefficient number 71 (and thus the fundamental will appear at fft coefficient numbers $11+1=12$ and $71-11=60$)
The relationship between fft coefficient number and frequency is given by

$$
\mathrm{f}=\left(\frac{\mathrm{n}-1}{\mathrm{~N}_{\mathrm{SIG}}}\right) \mathrm{f}_{\mathrm{SIG}} \quad \text { or by } \quad \mathrm{n}=1+\mathrm{f}\left(\frac{\mathrm{~N}_{\mathrm{SIG}}}{\mathrm{f}_{\mathrm{SIG}}}\right)
$$

ct $\mathrm{N}=16384 \mathrm{~Np}=1 \mathrm{Npsig}=11 \mathrm{Nsam}=234.1$ nres $=10 \mathrm{fCL} / \mathrm{fsig}=6.364 \mathrm{fDFT} / \mathrm{fsig}=1489 \mathrm{DCyc}$

Zero-order Sample and Hold (100\% duty cycle)

Zero-order Sample and Hold (100\% duty cycle)

Zero-order Sample and Hold (100\% duty cycle)

No spectral distortion components apparent
$\begin{array}{cccc}\text { Magnitude of Fundamental } 0.950 & \text { 2nd Harmonic } 0.000 \\ \text { in dB } & -0.4 & -220.0\end{array}$
Res 10 No. points 16384 fsig $=50.00$ No.DFT Periods 1.00
No Sig Periods $11.00 \mathrm{fCL} / \mathrm{ssig} 6.36$ Nsamp $=234.06$ DutyCycle $=1.0$
Rectangular Window
Pyyt =
Columns 1 through 8
$-56.7666-72.6329-89.0180-65.9223-84.2996-73.2991-67.3277-63.0000$
Columns 9 through 16

Columns 17 through 24
$-83.8268-72.4855-81.0600-71.7684-84.3311-72.4003-100.5411-75.2036$

Columns 25 through 32
$-104.6890-87.5996-86.8260-81.1797-95.8796-74.4617-94.9546-71.5626$
Columns 33 through 40
$-79.4929-82.0122-108.8848-86.4078-108.8871-73.6154-80.9806-75.0515$
Columns 41 through 48
-97.3320 -78.9052 -99.3163 -80.8769 -91.3537-74.6389-110.0719 -77.5449
Columns 49 through 56
$-107.4100-75.6450-92.3523-72.3248-90.2704-78.7130-94.4099-64.8687$
Columns 57 through 64
$-89.3611-75.9678-85.3927-15.3935-95.8308-75.1766-95.9254-63.5195$
Columns 65 through 72
$-87.8618-73.6845-108.7233-68.9982-119.8229-71.7477-120.0000-71.7563$

Columns 73 through 80
$-119.9494-68.7360-109.5559-73.6204-89.4074-63.5185-97.8093-74.8683$
Columns 81 through 88
-98.2726-18.1394 -88.4301 -76.0204 -92.7995 -65.1698 -98.4133 -75.7393
Columns 89 through 96
$-94.8485-72.0469-97.3332-76.9476-112.8736-76.5337-116.8212-79.5798$
Columns 97 through 104
$-98.2141-81.0207-106.8397-76.9870-105.5319-79.2621-89.5668-79.9400$
Columns 105 through 110
$-118.9287-86.4077-117.6606-76.3449-90.0484-82.8245$

Zero-order Sample and Hold (50\% duty cycle)
Return to Zero

Zero-order Sample and Hold (50\% duty cycle)

Return to Zero

Rect $\mathrm{N}=16384 \mathrm{~Np}=1 \mathrm{Npsig}=11 \mathrm{Nsam}=234.1$ nres $=10 \mathrm{fCL} / \mathrm{fsig}=6.364 \mathrm{fDFT} / \mathrm{fsig}=1489 \mathrm{DCycle}=0.5$

Magnitude of Fundamental 0.950 2nd Harmonic 0.000 in dB -0.4 -220.0
Res 10 No. points 16384 fsig $=50.00$ No.DFT Periods 1.00 No Sig Periods 11.0 fCL/fsig 6.36 Nsamp = 234.06 DutyCycle $=0.5$

Rectangular Window
Columns 1 through 8
$-64.9875-75.2613-95.1326-71.2094-90.2852-76.6156-73.2632-69.5014$
Columns 9 through 16
$-83.9643-77.8162-86.0866-6.5546-77.4246-78.1520-82.8739-67.8450$
Columns 17 through 24
$-89.2754-77.9987-86.4061-73.3492-89.4464-72.4374-105.4623-75.4661$
Columns 25 through 32
$-109.3846-77.1183-91.3829-74.6853-100.0604-83.0708-98.8928-75.4658$

Columns 33 through 40
$-83.0515-77.2072-113.3805-73.0081-111.6998-82.3913-83.3412-72.6823$

Columns 41 through 48
$-99.2516-77.3944-100.3706-69.8376-92.1989-78.5482-111.3365-67.6419$
Columns 49 through 56
-106.9480 -72.1848-91.2497-64.1067 -88.1852 -72.9575 -91.1348 -57.9429
Columns 57 through 64
$-85.1895-73.1598-79.8865-9.1712-88.8113-71.4550-86.7115-58.0188$
Columns 65 through 72
$-76.4621-69.7368-93.6087-64.6782-98.9534-67.5523-64.9561-67.2996$
Columns 73 through 80
$\begin{array}{lllllllllllllllll}-98.9315 & -63.4010 & -94.7247 & -69.9035 & -77.9584 & -58.0242 & -89.2150 & -71.7656\end{array}$

Columns 81 through 88
-91.2239 -11.9238 -82.9849 -72.9920 -88.6074 -58.0323 -95.6827 -74.9840
Columns 89 through 96
$-92.7477-63.9572-95.8693-76.5352-112.3992-67.3668-114.7685-74.7990$
Columns 97 through 104
$-99.0492-69.8650-109.1443-75.9390-107.4431-70.6650-92.0134-75.6831$
Columns 105 through 110
$-120.0000-72.9982-117.8073-77.0787-93.6013-72.8613$

DAC Comparisons with Quantization

N	θ	Nsam	n	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$
32 K	1	142.5	8	-.596	-56.7	-64.5
128 K	1	569.9	8	-.596	-56.7	-64.45
1024	1	6.8	6	-.735	-44.7	-54.1
1024	1	6.8	12	-.594	-80.8	-69.6
1024	1	6.8	24	-.594	-120	-68.5
16 K	1	109.2	6	-.729	-44.7	-52.7
16 K	1	109.2	12	-.589	-80.8	-90
16 K	1	109.2	14	-.589	-120	-92.7
256	1	1.7	18	-.589	-120	-48.2
1024	1	6.8	18	-.595	-120	-68.5
4048	1	27.3	18	-.588	-120	-72.3
16 K	1	436.9	18	-.589	-120	-96.5
16 K	1	234	10	-.801	-100.5	-82
16 K	0.5	234	10	-6.55	-105.4	-77.4

Return to Zero Effects

RTZ reduces signal level
RTZ does not introduce significant distortion
RTZ typically degrades SNR

Previous-code dependence in a data converter can introduce significant distortion and this is often significant when operating with high-frequency inputs and high-speed clocks

Return-to Zero can significantly reduce previous-code dependence

RTZ may significantly improve SDR (or SFDR or THD)

Effects of RTZ on SNDR are less apparent since SDR improves but SNR deteriorates but in a good design, the distortion improvements with RTZ may be sufficiently attractive to overcome the loss in SNR

Typical SFDR Plots

From: Y. Cong and R. L. Geiger, "A 1.5-v 14-bit 100-MS/s Self-Calibrated DAC," IEEE J. of Solid State Circuits, December 2003, vol. 38, no. 12, pp. 2051-2060.

Summary of Duty Cycle Effects

Duty Cycle does not introduce harmonic distortion

Duty Cycle reduction reduces signal levels thus degrades SNR

Duty Cycle reduction to achieve RTZ can improve SDR and SNDR

Number of Samples/Period

One Sample per Period

Multiple Samples per Period

- Many authors use a data acquisition system and select one sample/period
- Spectrum analyzer will generally measure continuous-time effects
- What is most important in the DAC output is strongly system application dependent

Number of Samples/Period

Typical DAC Response

Glitches for even small changes in DAC output for some architectures can be very large (hundreds or even thousands of LSBs)

Number of Samples/Period

Typical DAC Response

Number of Samples/Period

- Settling error can be multiple LSB at Nyquist Rate
- Multiple LSB settling error does not cause distortion if settling is linear
- Glitches are a significant contributor to spectral distortion (at high frequencies)

Spectral Characterization of Data Converters

- Distortion Analysis
- Time Quantization Effects
- of DACs
- of ADCs
- Amplitude Quantization Effects
- of DACs
- of ADCs

Clock Jitter

Effects of Jitter on Spectral Performance

Jitter and Skew

Model of Jitter

Assume t_{Jk} are uncorrelated uniformly distributed random variables

$$
\mathrm{t}_{\mathrm{Jk}} \propto \mathrm{U}\left(-\frac{\theta}{2} \mathrm{~T}_{\mathrm{S}}, \frac{\theta}{2} \mathrm{~T}_{\mathrm{S}}\right)
$$

Note: there can also be jitter in the ideal clock or there may be no ideal clock so zero crossings may be modeled as a random walk or a sum of a random walk and uniform jitter. Analysis more complicated in these cases.

Analytical Characterization of Clock Jitter

Assume the input can be expressed as

$$
v_{\mathrm{IN}}=\frac{V_{R E F}}{2}+\frac{V_{R E F}}{2} \sin (\omega t+\theta)
$$

Rather than assuming that the clock has jitter and the input has no jitter, it will be assumed that the clock has no jitter but the input contains the jitter. This should provide the same jitter-based sampling errors. Thus, it will be assume that the time variable in the input can be expressed as

$$
t=t_{N}+t_{R}
$$

where t_{N} the nominal time and t_{R} is the random time (that has been added to the input rather than the clock)

The input can be expanded in a Taylor's series as

$$
\boldsymbol{v}_{\mathbb{N}}=\left.\boldsymbol{v}_{\mathbb{N}}\right|_{t_{R}=0}+\left.\frac{\partial \boldsymbol{v}_{\mathbb{N}}}{\partial t_{R}}\right|_{t_{R}=0} t_{R}+\left.\frac{1}{2!} \frac{\partial^{2} \boldsymbol{v}_{\mathbb{N}}}{\partial t_{R}^{2}}\right|_{t_{R}=0} t_{R}^{2}+\ldots
$$

Truncating after first-order terms we have

$$
\left.\boldsymbol{v}_{\mathbb{N}} \cong \boldsymbol{v}_{\mathbb{N}}\right|_{t_{R}=0}+\left.\frac{\partial \boldsymbol{v}_{\mathbb{N}}}{\partial t_{R}}\right|_{t_{R}=0} t_{R}
$$

Analytical Characterization of Clock Jitter

$$
\left.\boldsymbol{v}_{\mathbb{N}} \cong \boldsymbol{v}_{\mathbb{N}}\right|_{t_{R}=0}+\left.\frac{\partial \boldsymbol{v}_{\mathbb{N}}}{\partial t_{R}}\right|_{t_{R}=0} t_{R}
$$

It now follows from the expression from the input that

$$
\left.\frac{\partial \boldsymbol{v}_{\text {iN }}}{\partial t_{R}}\right|_{t_{R}=0}=\frac{V_{R E F}}{2} \omega \cos \left(\omega t_{N}+\theta\right)
$$

Thus

$$
v_{\text {IN }} \cong \frac{V_{R E F}}{2}+\frac{V_{\text {REF }}}{2} \sin \left(\omega \mathrm{t}_{N}+\theta\right)+\frac{V_{R E F}}{2} \omega \cos \left(\omega\left(t_{N}\right)+\theta\right) t_{R}
$$

The signal and noise jitter components can be identified as

$$
\begin{aligned}
& \boldsymbol{v}_{\text {IN_Sig }} \cong \frac{V_{R E F}}{2}+\frac{V_{R E F}}{2} \sin \left(\omega \mathrm{t}_{N}+\theta\right) \\
& \boldsymbol{v}_{\text {IN_jiter }} \cong \frac{V_{R E F}}{2} \omega \cos \left(\omega\left(t_{N}\right)+\theta\right) t_{R}
\end{aligned}
$$

Analytical Characterization of Clock Jitter

$$
\begin{aligned}
& v_{\mathbf{N N} \mathrm{Sig}} \cong \frac{V_{\text {REF }}}{2}+\frac{V_{\text {REF }}}{2} \sin \left(\omega \mathrm{t}_{N}+\theta\right) \\
& \boldsymbol{v}_{\text {IN_jiter }} \cong \frac{V_{\text {REF }}}{2} \omega \cos \left(\omega\left(t_{N}\right)+\theta\right) t_{R}
\end{aligned}
$$

Will now obtain the SNR $_{\text {Jitter }}$
Observe the jitter noise can be expressed as

$$
v_{\text {IN_jiter }} \cong\left[\frac{V_{R E F}}{2} \omega \cos \left(\omega\left(t_{N}\right)+\theta\right)\right] \bullet t_{R}
$$

Consider the following theorem:
Theorem: If $X_{1}(t)$ is a zero-mean random process and $X_{2}(t)$ is a periodic deterministic function where the RMS value of X_{1} is $X_{1 \text { RMS }}$ and the RMS value of X_{2} is $X_{2 R M s}$,then the RMS value of the product is given by the expression $X_{\text {RMS }}=X_{\text {1RMS }} X_{\text {2RMS }}$

Analytical Characterization of Clock Jitter

$$
\begin{gathered}
\left.v_{\text {IN_jiterRMS }} \cong\left[\frac{V_{R E F}}{2} \omega \cos \left(\omega\left(t_{N}\right)+\theta\right)\right]_{R M S} \bullet t_{R}\right|_{R M S} \\
{\left[\frac{V_{R E F}}{2} \omega \cos \left(\omega\left(t_{N}\right)+\theta\right)\right]_{R M S}=\left[\frac{V_{R E F}}{2} \frac{\omega}{\sqrt{2}}\right]}
\end{gathered}
$$

Recall it has been assumed that at the zero crossings of the sampling clock
Recall another theorem $\mathrm{t}_{\mathrm{R}} \propto \mathrm{U}\left(-\frac{\theta}{2} \mathrm{~T}_{\mathrm{S}}, \frac{\theta}{2} \mathrm{~T}_{\mathrm{S}}\right) \quad \mu_{t_{R}}=0 \quad \sigma_{t_{P}}=\frac{\theta \mathrm{T}_{\mathrm{S}}}{\sqrt{12}}$
Theorem: If $n(t)$ is a random process and $<n\left(k T_{S}\right)>$ is a sequence of samples of $n(t)$ then for large T / T_{s},

$$
\mathrm{V}_{\mathrm{RMS}}=\sqrt{\frac{1}{T} \int_{\mathrm{t}_{1}}^{\mathrm{t}_{1}+T} \mathrm{n}^{2}(\mathrm{t}) \mathrm{dt}}=\sqrt{\sigma_{\mathrm{n}\left(\mathrm{k} T_{\mathrm{S}}\right)}^{2}+\mu_{\mathrm{n}\left(\mathrm{k} T_{\mathrm{S}}\right)}^{2}}
$$

Thus the RMS value of the jitter time sequence obtained by sampling the jitter at multiples of the nominal sampling period T can be expressed as

$$
\left.t_{R}\right|_{R M S}=\sigma_{t_{R}}=\frac{\theta T_{S}}{\sqrt{12}}
$$

Analytical Characterization of Clock Jitter

$$
\left.\left.\boldsymbol{v}_{\text {IN_jitterRMS }} \cong\left[\frac{V_{R E F}}{2} \omega \cos \left(\omega\left(t_{N}\right)+\theta\right)\right]\right|_{R M S} \bullet t_{R}\right|_{R M S}
$$

We thus have

$$
\boldsymbol{v}_{\mathbb{I N} _ \text {jiterRMS }} \cong\left[\frac{\frac{V_{R E F}}{2} \omega}{\sqrt{2}}\right] \cdot \sigma_{t_{R}}
$$

For full-signal input, the RMS value is given by

$$
v_{\mathrm{IN} _ \text {SigRMS }} \cong \frac{V_{R E F}}{2 \sqrt{2}}
$$

It thus follows that the SNR is given by

$$
S N R_{\text {Jitter }}=\frac{\frac{V_{\text {REF }}}{2 \sqrt{2}}}{\left[\frac{\frac{V_{\text {REF }}}{2} \omega}{\sqrt{2}}\right] \cdot \sigma_{t_{R}}}=\frac{1}{\omega \sigma_{t_{R}}}
$$

Analytical Characterization of Clock Jitter

$$
S N R_{\text {Jiter }}=\frac{1}{\omega \sigma_{t_{R}}}
$$

Or in dB we thus have

$$
\begin{aligned}
& S N R_{\text {Jiter }-d B}=-20 \log \left(2 \pi f \sigma_{t_{R}}\right) \\
& S N R_{\text {Jiter } \quad d B}=-15.96-20 \log \left(f \sigma_{t_{R}}\right)
\end{aligned}
$$

For small f or $\sigma_{t R}$ the right-most term is large and positive
This can be compared to the quantization noise

$$
S N R_{\text {Quant_dB }}=6.02 n+1.76
$$

As the $f \sigma_{t R}$ product gets large, the jitter will dramatically degrade performance

Combined Quantization and Jitter Noise

Recall

$$
\boldsymbol{v}_{\text {noiseRMS }}=\sqrt{V_{\text {QuantRMS }}^{2}+V_{\mathrm{IN} _ \text {itterRMS }}^{2}}
$$

$$
\begin{aligned}
& v_{\text {QuantRMS }}=\frac{V_{L S B}}{\sqrt{12}}=\frac{V_{R E F}}{2^{n} \sqrt{12}} \\
& v_{\text {SigRMS }}=\frac{V_{R E F}}{2 \sqrt{2}}
\end{aligned}
$$

Thus

$$
S N R_{\text {Jitter-Quant }}=\frac{\frac{V_{R E F}}{2 \sqrt{2}}}{\sqrt{\left[\frac{\frac{V_{R E F}}{2} \omega}{\sqrt{2}}\right]^{2}} \sigma_{t_{R}}^{2}+\frac{V_{R E F}^{2}}{2^{2 n} \bullet 12}}=\frac{1}{\sqrt{\omega^{2} \sigma_{t_{R}}^{2}+\frac{8}{3 \bullet 2^{2 n+2}}}}
$$

Alternately

$$
\begin{aligned}
& S N R_{\text {Jitter-Quant }}=\frac{1}{\sqrt{\frac{1}{S N R_{\text {Jiter }}^{2}}+\frac{1}{S N R_{\text {Quant }}^{2}}}} \\
& S N R_{\text {Jiter-QuantaB }}=-10 \log \left(\frac{1}{S N R_{\text {jitter }}^{2}}+\frac{1}{S N R_{\text {Quant }}^{2}}\right)
\end{aligned}
$$

Combined Quantization and Jitter Noise

$$
S N R_{\text {Jitter-Quant }}=\frac{1}{\sqrt{\omega^{2} \sigma_{t_{R}}^{2}+\frac{8}{3 \bullet 2^{2 n+2}}}}
$$

Crossover Frequency

$$
f=\frac{1}{\pi \sigma_{t_{R}}} \sqrt{\frac{8}{3}} \frac{1}{2^{n+2}}=\frac{0.13}{\sigma_{t_{R}} 2^{n}}
$$

Model of Jitter

Assume t_{Jk} are uncorrelated uniformly distributed random variables

$$
\mathrm{t}_{\mathrm{Jk}} \propto \mathrm{U}\left(-\frac{\theta}{2} \mathrm{~T}_{\mathrm{S}}, \frac{\theta}{2} \mathrm{~T}_{\mathrm{S}}\right)
$$

Consider $\theta=.01, .001, .0001, .00001$

Observe: If T_{S} is a 100 MHz clock, then $\mathrm{T}_{\mathrm{S}}=10$ nsec and $\theta=.0001$ corresponds to 1 psec ($\pm 0.5 \mathrm{psec}$) of symmetric jitter

Effects of jitter on spectral performance

$$
V_{I N}=\sin (\omega t)+0.5 \sin (2 \omega t) \quad \omega=2 \pi f_{\text {sig }} \quad \mathrm{f}_{\text {sig }}=50 \mathrm{~Hz}
$$

Rect. Window $\mathrm{N}=512 \mathrm{~Np}=31$ Jitter $=0$

Effects of jitter on spectral performance

$$
V_{I N}=\sin (\omega t)+0.5 \sin (2 \omega t) \quad \omega=2 \pi f_{\text {sig }} \quad \mathrm{f}_{\text {sig }}=50 \mathrm{~Hz}
$$

Effects of jitter on spectral performance

$$
V_{I N}=\sin (\omega t)+0.5 \sin (2 \omega t) \quad \omega=2 \pi \mathrm{f}_{\text {sig }} \quad \mathrm{f}_{\text {sig }}=50 \mathrm{~Hz}
$$

Effects of jitter on spectral performance

$$
V_{I N}=\sin (\omega t)+0.5 \sin (2 \omega t) \quad \omega=2 \pi \mathrm{f}_{\text {sig }} \quad \mathrm{f}_{\text {sig }}=50 \mathrm{~Hz}
$$

Rect. Window $\mathrm{N}=512 \mathrm{~Np}=31$ Jitter $=0.01$

Summary of Jitter Effects

Jitter (as considered here) does not introduce harmonic distortion

Jitter does increase the noise floor

Jitter vs Clock Skew

- Jitter and Clock skew may appear to be closely related but have dramatically different effects
- Clock Skew is a systematic perturbation of the clock signal
- Clock Skew may be a random variable at the design stage but each fabricated device will have a specific clock skew
- Clock edge variations from ideal will be the sum of those variations due to random noise and those due to clock skew
- In contrast to jitter which does not introduce harmonic distortion, clock skew can introduce spectral components, specifically harmonic components and spectral spreading around the spectral components of the fundamental and harmonics

Statistical Characterization of Electronic Components and Circuits

Recall: Almost all data converter structures work perfectly if components are ideal

Major challenges in data converter design

- Parasitic Resistances and Capacitances
- Nonlinearity in components
- Statistical variation in components and circuits
- Model uncertainties
- Power supply variability

Consider a flash ADC

- Resistor values and offset voltages of Comparators are all random variables at design level
- Variations of these RVs affect the break point and thus the yield

Consider Current-Steering DAC

Ideally

$$
V_{\text {OUT }}=-I_{1} \cdot R_{F} \sum_{i=0}^{n-1} \frac{b_{i}}{2^{n-i}}
$$

Consider Current-Steering DAC

Basic Implementation of Current Sources

$$
\text { Ideally } I_{m}=\frac{\mu C_{O X}}{2}\left[\frac{W_{m}}{L_{m}}\right]\left(V_{R}-V_{T p}\right)^{2} \quad \begin{aligned}
& L_{m}=L_{0} \\
& W_{m}=2^{m-1} W_{0}
\end{aligned}
$$

Actually

$$
\mathrm{I}_{\mathrm{m}} \cong \frac{\mu_{\mathrm{k}} \mathrm{C}_{\mathrm{OXk}}}{2}\left[\frac{\mathrm{~W}_{\mathrm{m}_{\mathrm{k}}}}{\mathrm{~L}_{\mathrm{m}_{\mathrm{k}}}}\right]\left(\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{Tpk}}\right)^{2}
$$

I_{m} is a random variables and is a function of the model parameters $\mu_{k}, C_{O X k}, W_{m k}, L_{m k}$, and $V_{T p k}$ $\mu_{\mathrm{k}}, \mathrm{C}_{\mathrm{OXk}}, \mathrm{W}_{\mathrm{mk}}, \mathrm{L}_{\mathrm{mk}}$, and $\mathrm{V}_{\mathrm{Tpk}}$ are all random variables

Recall from previous lecture

How important is statistical analysis?

Example: 7-bit FLASH ADC with R-string DAC

Assume R -string is ideal, $\mathrm{V}_{\mathrm{REF}}=1 \mathrm{~V}$ and V_{OS} for each comparator must be at most $+/-1 / 2$ LSB

Case 1

Standard deviation is 5 mV

$$
\begin{aligned}
& P_{\mathrm{COMP}}=0.565 \\
& \mathrm{Y}_{\mathrm{ADC}}=3.2 \cdot 10^{-32}
\end{aligned}
$$

Case 2
Standard deviation is 1 mV

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{COMP}}=0.999904 \\
& \mathrm{Y}_{\mathrm{ADC}}=0.988
\end{aligned}
$$

Statistics play a key role in the performance and consequently yield of a data converter

Statistical Analysis Strategy

Will first focus on statistical characterization of resistors, then extend to capacitors and transistors

Every resistor R can be expressed as

$$
\mathrm{R}=\mathrm{R}_{\mathrm{N}}+\mathrm{R}_{\mathrm{RP}}+\mathrm{R}_{\mathrm{RW}}+\mathrm{R}_{\mathrm{RD}}+\mathrm{R}_{\mathrm{RGRAD}}+\mathrm{R}_{\mathrm{RL}}
$$

where R_{N} is the nominal value of the resistor and the remaining terms are all random variables
R_{RP} : Random process variations
R_{Rw} : Random wafer variations
R_{RD} : Random die variations
$\mathrm{R}_{\text {RGRAD }}$: Random gradient variations
R_{RL} : Local Random Variations

- Data Converters (ADCs and DACs) are ratiometric devices and performance often dominated by ratiometric device characteristics (e.g. matching)
- Many other AMS functions are dependent upon dimensioned parameters and often not dependent upon matching characteristics

Statistical Analysis Strategy

$$
R=R_{N}+R_{R P}+R_{R W}+R_{R D}+R_{R G R A D}+R_{R L}
$$

$R_{R P}$: Random process variations $\quad R_{R G R A D}$: Random gradient variations
R_{RW} : Random wafer variations $\quad \mathrm{R}_{\mathrm{RL}}$: Local Random Variations
R_{RD} : Random die variations

$$
\sigma_{R P} \gg \sigma_{R W} \gg \sigma_{R D}
$$

- All variables globally uncorrelated
- For good common-centroid layouts gradient effects can be neglected
- Local random variations often much smaller than $R_{R P}, R_{R W}$, and $R_{R D}$ though not necessarily
- Area dominantly determines $\sigma_{R L}$, but area has little effect on the other variables
- At the resistor-level on a die, $R_{R P}, R_{R W}$ and $R_{R D}$ highly correlated thus cause no mismatch
- Major challenge in data converter design is managing $R_{R L}$ effects
- All zero mean and approximately Gaussian (truncated)
- For dimensioned performance characteristics (e.g. band edge of filter), R_{RP}, $R_{R W}$ and $R_{R D}$ are dominant and $R_{\text {RGRAD }}$ and $R_{R L}$ typically secondary

For notational convenience, assume $R=R_{N}+R_{R}$
R_{N} includes $R_{R P}, R_{R W}$ and $R_{R D}, R_{G R A D}$ neglected, $R_{R}=R_{R L}$

Stay Safe and Stay Healthy !

End of Lecture 8

Resistor Characterization

Resistors are generally made of thin films of conductive or semiconductor materials

Generally h is very small compared to L and W
Films are often characterized by Sheet Resistance
In the ideal case

$$
\mathrm{R}=\rho\left(\frac{1}{\mathrm{H}} \cdot \frac{\mathrm{~L}}{\mathrm{~W}}\right)=\mathrm{R}_{\square}\left(\frac{\mathrm{L}}{\mathrm{~W}}\right)
$$

Resistor Characterization

Resistors are generally made of thin films of conductive or semiconductor materials

Film Characterized by Resistivity : $\quad \rho(x, y, z)$

Films are often characterized by Sheet Resistance

$$
R_{\square}(x, y)=\frac{\rho(x, y, z)}{H(x, y)}
$$

Ideally $\rho(x, y, z)$ is independent of position as is $R_{0}(x, y)$
In the ideal case $\quad \mathrm{R}=\rho\left(\frac{1}{\mathrm{H}} \bullet \frac{\mathrm{L}}{\mathrm{W}}\right)=\mathrm{R}_{\square}\left(\frac{\mathrm{L}}{\mathrm{W}}\right)$

Resistor Characterization

Resistors are generally made of thin films of conductive or semiconductor materials
Ideally

$$
R=R_{\square}\left(\frac{L}{W}\right)
$$

$$
R_{\square}=\frac{\rho}{h}
$$

Resistor Characterization

 Ideally

- Boundary of resistor varies with position
- $\rho(x, y, z)$ varies with position
- Thickness $(H(x, y))$ varies with position
- Properties of resistor vary with position and temperature

Resistor Characterization

-B

Boundary of resistor varies $\rho(x, y, z)$ varies with position

These variations will define R_{R}

Consider the following resistor circuits

mean

$$
\mu_{R_{R}}=0
$$

standard deviation
Distribution: Truncated Gaussian

$$
N \sim\left(0, \sigma_{R_{R}}\right)
$$

$$
\begin{gathered}
R_{1}=R_{N}+R_{R 1} \\
R_{2}=R_{N}+R_{R 2} \\
R_{\text {Ser2 } 2}=2 R_{N}+R_{R 1}+R_{R 2}
\end{gathered}
$$

Compare the standard deviation of the resistance of the series combination with that of a single resistor

Consider the following Theorem:

Theorem: If $X_{1}, \ldots X_{n}$ are uncorrelated random variables and $a_{1}, . . a_{n}$ are real numbers, then the random variable Y defined by

$$
Y=\sum_{i=1}^{n} a_{i} x_{i}
$$

has mean and variance given by

$$
\begin{gathered}
\mu_{Y}=\sum_{i=1}^{n} a_{i} \mu_{i} \\
\sigma_{Y}=\sqrt{\sum_{i=1}^{n}\left(a_{i} \sigma_{i}\right)^{2}}
\end{gathered}
$$

where μ_{i} and σ_{i} are the mean and variance of X_{i} for $\mathrm{i}=1, \ldots \mathrm{n}$.

Series Resistor Connection

(of nominally identical devices)
$\left.\begin{array}{l}R_{1}=R_{N}+R_{R 1} \\ R_{2}=R_{N}+R_{R 2}\end{array}\right\} \quad R_{\text {Ser } 2}=2 R_{N}+R_{R 1}+R_{R 2}$
From Theorem $\quad \sigma_{S e r 2}=\sqrt{2} \sigma_{R_{R}}$

$$
\mathrm{N} \sim\left(0, \sqrt{2} \sigma_{R_{R}}\right)
$$

Extending to n -resistors that are nominally identical

$$
\begin{gathered}
\mathrm{R}_{\text {Sern }}=\mathrm{nR} \mathrm{~N}_{\mathrm{N}}+\sum_{k=1}^{n} \mathrm{R}_{\mathrm{Rk}} \\
\sigma_{\text {Sern }}=\sqrt{\mathrm{n}} \sigma_{\mathrm{R}_{\mathrm{R}}} \\
\mathrm{~N} \sim\left(0, \sqrt{\mathrm{n}} \sigma_{\mathrm{R}_{\mathrm{R}}}\right)
\end{gathered}
$$

Summary of Results

Structure	Nominal Resistance	Standard Deviation	Normalized Standard Deviation
R	R_{N}	$\sigma_{\mathrm{R}_{\mathrm{R}}}$	
Ser nR	nR	$\sqrt{\mathrm{n}} \sigma_{\mathrm{R}_{\mathrm{R}}}$	

Note increasing the resistance by a factor of n increased the standard deviation by \sqrt{n}

Normalized Statistical Characterization

$$
\sigma_{\frac{R}{R_{N}}}=?
$$

From previous theorem:
For single resistor R

$$
\sigma_{\frac{R}{R_{N}}}^{2}=\frac{1}{R_{N}^{2}} \sigma_{R_{R}}^{2} \quad \longrightarrow \quad \sigma_{\frac{R}{R_{N}}}=\frac{1}{R_{N}} \sigma_{R_{R}}
$$

For series connection of n ideally identical resistors

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{EQ}}=\mathrm{nR} \mathrm{R}_{N}+\sum_{k=1}^{n} \mathrm{R}_{\mathrm{Rk}} \\
& \mathrm{R}_{\text {EONom }}=\frac{\mathrm{R}_{\text {EQ }}}{n \mathrm{R}_{\mathrm{N}}}=\frac{n \mathrm{nR}_{N}+\sum_{k=1}^{n} \mathrm{R}_{\mathrm{RK}}}{n \mathrm{R}_{\mathrm{N}}}=1+\frac{1}{n} \sum_{k=1}^{n} \frac{\mathrm{R}_{\mathrm{Rk}}}{\mathrm{R}_{\mathrm{N}}} \\
& \sigma_{\frac{R_{E O}}{n R_{N}}}^{2}=\frac{1}{n^{2}} \sum_{k=1}^{n} \frac{1}{R_{N}^{2}} \sigma_{R_{R}}^{2}=\frac{1}{n^{2}} \sum_{k=1}^{n} \sigma_{\frac{R_{R}}{R_{N}}}^{2}=\frac{1}{n} \sigma_{\frac{R_{R}}{R_{N}}}^{2} \longrightarrow \sigma_{\frac{R_{E Q}}{n R_{N}}}=\frac{1}{\sqrt{n}} \sigma_{\frac{R_{R}}{R_{N}}}
\end{aligned}
$$

Note increasing the resistance by a factor of n dropped the normalized standard deviation by \sqrt{n}

Summary of Results

Structure	Nominal Resistance	Standard Deviation	Normalized Standard Deviation
R	R_{N}	$\sigma_{R}=\sigma_{\mathrm{R}_{\mathrm{R}}}$	$\sigma_{\frac{R_{R}}{R_{N}}}$
Ser nR	nR	$\sqrt{\mathrm{n}} \sigma_{\mathrm{R}_{\mathrm{R}}}$	$\frac{1}{\sqrt{n}} \sigma_{R_{\mathrm{R}}}$

Note increasing the resistance by a factor of n increased the standard deviation by \sqrt{n}

Note increasing the resistance by a factor of n decreased the normalized standard deviation by \sqrt{n}

Parallel Resistor Connection

$$
\begin{aligned}
& \left.\begin{array}{l}
R_{1}=R_{N}+R_{R 1} \\
R_{2}=R_{N}+R_{R 2}
\end{array}\right\} \quad R_{\text {Par } 2}=\frac{\left(R_{N}+R_{R_{R 1}}\right)\left(R_{N}+R_{R_{R 2}}\right)}{2 R_{N}+R_{R_{R 1}}+R_{R_{R 2}}} \\
& R_{P a r 2}=\frac{R_{N}^{2}+R_{N}\left(R_{R_{R 1}}+R_{R_{R 2}}\right)+R_{R_{R 1}} R_{R_{R 2}}}{2 R_{N}+R_{R_{R 1}}+R_{R_{R 2}}} \\
& R_{\text {Par2 }} \cong \frac{R_{N}^{2}}{2 R_{N}} \frac{1+\frac{R_{R_{R 1}}+R_{R_{R 2}}}{R_{N}}}{1+\frac{R_{R_{R 1}}+R_{R_{R 2}}}{2 R_{N}}} \\
& \mathrm{R}_{\text {Par2 }} \cong \frac{\mathrm{R}_{N}}{2} \frac{1+\frac{\mathrm{R}_{\mathrm{R}_{R 1}}+\mathrm{R}_{\mathrm{R}_{R 2}}}{\mathrm{R}_{N}}}{1+\frac{\mathrm{R}_{\mathrm{R}_{R 1}}+\mathrm{R}_{\mathrm{R}_{R 2}}}{2 \mathrm{R}_{N}}}
\end{aligned}
$$

- The random variable $R_{\text {Par2 }}$ is highly nonlinear in $R_{R 1}$ and $R_{R 2}$
- Some very good approximations of $\mathrm{R}_{\text {Par2 }}$ can be made that linearize the expression

Parallel Resistor Connection

$$
\left.\begin{array}{l}
R_{1}=R_{N}+R_{R 1} \\
R_{2}=R_{N}+R_{R 2}
\end{array}\right\}
$$

$$
R_{\text {Par } 2} \cong \frac{R_{N}}{2} \frac{1+\frac{R_{R_{R 1}}+R_{R_{R 2}}}{R_{N}}}{1+\frac{R_{R_{R 1}}+R_{R_{R 2}}}{2 R_{N}}}
$$

Recall that for x small，

$$
\frac{1}{1+x} \cong 1-x
$$

Thus

A

$$
R_{P a r 2} \cong \frac{R_{N}}{2}\left(1+\frac{R_{R_{R 1}}+R_{R_{R 2}}}{R_{N}}\right)\left[1-\frac{R_{R_{R 2}}+R_{R_{R 2}}}{2 R_{N}}\right] \cong \frac{R_{N}}{2}+\frac{1}{4} R_{R_{R 1}}+\frac{1}{4} R_{R_{R 2}}
$$

From Theorem

$$
\sigma_{R_{P a r 2}}^{2}=\frac{1}{16} \sigma_{R_{马}}^{2}+\frac{1}{16} \sigma_{R_{马}}^{2} \cong \frac{1}{8} \sigma_{R_{马}}^{2} \longrightarrow \sigma_{R_{P a r 2}} \cong \frac{1}{\sqrt{8}} \sigma_{R_{R}}
$$

For n in parallel，it follows that

$$
\sigma_{\mathrm{R}_{\text {Par }}} \cong \frac{1}{n^{3 / 2}} \sigma_{R_{R}}
$$

Parallel Resistor Connection

Consider normalized variance

$$
\begin{gathered}
R_{\text {Par-2 } 2}=\frac{R_{N}}{2} \\
\frac{R_{\text {Par2 } 2}}{R_{\text {Par2 } 2 \text { Norm }}} \cong 1+\frac{1}{2} \frac{R_{R_{\text {R1 }}}}{R_{N}}+\frac{1}{2} \frac{R_{R_{R 2}}}{R_{N}}
\end{gathered}
$$

From Theorem

$$
\begin{aligned}
& \sigma_{\frac{\mathrm{R}_{\text {Par } 2}}{\mathrm{R}_{\text {Par } 2 \text {-Norm }}}}^{2} \cong \frac{1}{4} \underset{\frac{R_{R_{1}}}{R_{N}}}{\sigma_{1}^{2}}+\frac{1}{4} \sigma_{\frac{\mathrm{R}_{R_{R 1}}}{R_{N}}}^{2}=\frac{1}{2} \sigma_{\frac{R_{R_{R 1}}}{R_{N}}}^{2} \\
& \sigma_{\frac{\mathrm{R}_{\text {Par } 2}}{\mathrm{R}_{\text {Par2-Norm }}}} \cong \frac{1}{\sqrt{2}} \sigma_{\frac{\mathrm{R}_{\mathrm{R}_{R 1}}}{\mathrm{R}_{\mathrm{N}}}}
\end{aligned}
$$

And for n in parallel

$$
\sigma_{\frac{\mathrm{R}_{\text {Pam }}}{\mathrm{R}_{\text {Pamm-Norm }}}} \cong \frac{1}{\sqrt{n}} \sigma_{\frac{\mathrm{R}_{R}}{\mathrm{R}_{N}}}
$$

$$
\mathrm{R}_{\text {Par-n }}=\frac{\mathrm{R}_{N}}{n}
$$

Note decreasing the resistance by a factor of n dropped the standard deviation by \sqrt{n}

Summary of Results

Structure

Nominal	Standard
Resistance	Deviation

R

Ser nR
R_{N}
$\sigma_{R}=\sigma_{\mathrm{R}_{\mathrm{R}}}$

$$
\frac{R_{B}}{\frac{R_{R}}{R_{N}}}
$$

$\sqrt{n} \sigma_{R_{R}}$

$$
\frac{1}{\sqrt{n}} \sigma_{\frac{R_{R}}{R_{N}}}
$$

Par nR

$$
\frac{\mathrm{R}_{\mathrm{N}}}{\mathrm{n}}
$$

$$
\frac{1}{n^{3 / 2}} \sigma_{R_{R}}
$$

$$
\frac{1}{\sqrt{n}} \sigma_{R_{R}}
$$

Note increasing or decreasing the resistance by a factor of n decreased the normalized standard deviation by \sqrt{n}

Note increasing the area by a factor of n decreased the normalized standard deviation by \sqrt{n}
What is the relationship between resistance, area, and standard deviation?

Consider parallel/series combination of 4 nominally identical resistors

Note making no change in the resistance reduced the standard deviation by 2
Note increasing the area by a factor of 4 dropped the standard deviation by 2

Summary of Results

Structure	Nominal Resistance	Standard Deviation	Normalized Standard Deviation
R	R_{N}	$\sigma_{\mathrm{R}_{\mathrm{R}}}$	$\sigma_{\frac{R_{R}}{R_{N}}}$
Ser nR	$n R_{N}$	$\sqrt{n} \sigma_{\mathrm{R}_{\mathrm{R}}}$	$\frac{1}{\sqrt{n}} \sigma_{\frac{R_{B}}{R_{N}}}$
Par nR	$\frac{\mathrm{R}_{N}}{\mathrm{n}}$	$\frac{1}{n^{3 / 2}} \sigma_{R_{R}}$	$\frac{1}{\sqrt{n}} \sigma_{\frac{\mathrm{R}^{\prime}}{\mathrm{R}_{N}}}$
Ser 2R	$2 \mathrm{R}_{\mathrm{N}}$	$\sqrt{2} \sigma_{\mathrm{R}_{\mathrm{R}}}$	$\overline{\sigma_{\frac{\mathrm{P}_{\mathrm{R}}}{R_{\mathrm{N}}}} / \sqrt{2}}$
Par 2R	$\frac{\mathrm{R}_{\mathrm{N}}}{2}$	$\sigma_{R_{R}} / \sqrt{8}$	$\sigma_{\frac{\mathrm{R}_{\mathrm{R}}}{R_{1}}} /$
Ser 4R	$4 \mathrm{R}_{\mathrm{N}}$	$2 \sigma_{\mathrm{R}_{\mathrm{R}}}$	$\sigma_{\frac{R_{\mathrm{R}}}{R_{\mathrm{N}}}} / 2$
Par 4R	$\frac{\mathrm{R}_{N}}{4}$	$\sigma_{R_{\mathrm{R}}} / 8$	$\begin{aligned} & \sigma_{R_{\mathrm{R}}}^{R_{N}} \end{aligned}$
Par/Ser 4R	R_{N}	$\sigma_{R_{R}} / 2$	$\frac{\mathrm{Re}^{\text {R }}}{\mathrm{R}_{\mathrm{N}}} / 2$

Observation:

In all cases, increasing the area by a factor of n decreases the normalized standard deviation by sqrt (n)

Have considered in previous examples the following scenarios

- Current density is uniform in each structure
- Aspect ratio plays no role in normalized performance
- Resistance value plays no role in normalized performance
- Only factor in normalized performance is area
- For a given resistance, each factor of 2 reduction in σ requires a factor of 4 increase in area

Key Implications:

If yield of a data converter is determined by matching performance, then every bit increment in performance will require at least a factor of 2 reduction in σ and correspondingly a factor of 4 increase in the area for the matching critical components if the same yield is to be obtained.

Formalize Resistor Characterization Concepts

Assume lithography is perfect, no gradient effects, and no contact resistance

$R_{\square}(x, y)$: Sheet resistance at (x, y)
Most authors assume: $\quad \int R_{a}(x, y) d x d y$
Most authors assume:

$$
\begin{gathered}
R_{\square E Q}=\frac{\int_{A} R_{\square}(x, y) d x d y}{A} \quad A=W L \\
R_{z_{1} z_{2}}=R_{\square E Q} \frac{L}{W}
\end{gathered}
$$

We will make this same assumption

Counter example showing limitations of standard assumptions

 Assume sheet resistance constant in yellow region of value $\mathrm{R}_{\mathrm{b} 1}$ and constant in purple region of value $\mathrm{R}_{\mathrm{b} 2}$
(B)

If ε is small and W_{x} large

$$
R_{\square E Q} \cong R_{\square 1} \quad \Longrightarrow \quad R_{A B} \cong R_{\square 1}\left(\frac{L}{W}\right)
$$

but $\quad R_{\mathrm{DEQ}}=\frac{\int_{A} R_{\square}(x, y) d x d y}{A} \cong \frac{R_{\square 1}+R_{\square 2}}{2}$
If $R_{\square 1}$ and $R_{\square 2}$ are not equal, then $R_{\square E Q} \neq R_{\square 1}$

Consider a square reference resistor of width $1 \mu \mathrm{~m}$

Assume the standard deviation of this reference resistor, due to local random variations, is $\sigma_{\text {REF }}$

Consider now a resistor of length L and width W
Define the equivalent sheet resistance of this resistor: $\mathrm{R}_{\mathrm{\square EQ}}$
$R_{\square E Q}$ is a random variable with a nominal value of $R_{\text {© }}$ and standard deviation that satisfies the expression

$$
\sigma_{R_{\mathrm{a} E Q}}^{2}=\frac{\sigma_{R E F}^{2}}{W \bullet L}=\frac{\sigma_{R E F}^{2}}{A}
$$

It follows that the value of the resistor R is given by the expression

$$
R=R_{\mathrm{DEQ}} \bullet \frac{L}{W}
$$

Thus

$$
\sigma_{R}^{2}=\left(\frac{L}{W}\right)^{2} \bullet \sigma_{R_{\boxed{\bullet}} Q}^{2} \quad \sigma_{R}^{2}=\left(\frac{L}{W}\right)^{2} \bullet \frac{\sigma_{R E F}^{2}}{W \bullet L}=\sigma_{R E F}^{2} \bullet \frac{L}{W^{3}}
$$

Consider a resistor of width W and length L

$$
\sigma_{R}^{2}=\left(\frac{L}{W}\right)^{2} \cdot \frac{\sigma_{R E F}^{2}}{W \cdot L}=\sigma_{R E F}^{2} \cdot \frac{L}{W^{3}}
$$

Consider now the normalized resistance $\frac{R}{R_{N}}$ where $\quad R_{N}=R_{\text {©N }} \frac{L}{W}$

It follows that

$$
\sigma_{\frac{R}{R_{N}}}^{2}=\left(\frac{1}{R_{N}^{2}}\right)\left(\sigma_{R E F}^{2} \frac{L}{W^{3}}\right)=\left(\frac{W^{2}}{R_{\text {IN }}^{2} L^{2}}\right)\left(\sigma_{R E F}^{2} \frac{L}{W^{3}}\right)=\left(\frac{1}{W L}\right)\left[\frac{\sigma_{R E F}^{2}}{R_{\text {DN }}^{2}}\right]
$$

The term on the right in [] is the ratio of two process parameters so define the process parameter A_{R} by the expression $\mathrm{A}_{\mathrm{R}}=\frac{\sigma_{\mathrm{REF}}}{\mathrm{R}_{\mathrm{GN}}}$
A_{R} is more convenient to use than both $\sigma_{R E F}$ and $R_{\square N}$
Thus the normalized resistance is given by the expression

$$
\sigma_{\frac{R}{R_{N}}}^{2}=\frac{A_{R}^{2}}{W L}=\frac{A_{R}^{2}}{A}
$$

Will term A_{R} the "Pelgrom parameter" (though Pelgrom only presented results for MOS devices)

How can A_{R} be obtained?

Recall: $\quad \sigma_{\frac{R}{R_{N}}}=\frac{A_{R}}{\sqrt{A}} \quad$ where $\quad A_{R}=\frac{\sigma_{R E F}}{R_{\mathrm{DN}}} \quad \stackrel{{ }_{{ }^{1 \mu}}}{\mathrm{~B}_{1}}$

1. Obtain A_{R} from a PDK
2. Build a test structure to obtain A_{R}

Case 1 (How about this?)

1) Take a large number, n, of test

$$
A_{R}=\frac{\sigma_{R E F}}{R_{\mathrm{DN}}}
$$

resistors with length and width
equal to 1μ
2) Measure $R_{1}, R_{2}, \ldots R_{n}$
3) Calculate the sample standard deviation

$$
\begin{aligned}
& \hat{\sigma}_{\mathrm{REF}} \cong \sigma_{\mathrm{SAMPLE}} \\
& \hat{R}_{\square N} \cong \mu_{\mathrm{SAMPLE}}
\end{aligned} \quad \square \quad A_{R} \cong \frac{\sigma_{S A M P L E}}{\mu_{S A M P L E}}
$$

There are some serious problems with this approach!

fringe effects will
significantly skew

$$
\hat{\sigma}_{\mathrm{REF}}
$$

- increasing size can reduce/minimize this concern
If devices are not really close, other random variations including gradients will skew results that are supposed to characterize local random variations

Case 2

$$
\hat{R}_{\mathrm{⿺} N} \cong \frac{W}{L} \mu_{\mathrm{SAMPLE}}
$$

$\mu_{\text {SAMPLE }}$ is the mean resistance of the sample

$$
\hat{A}_{R}=\frac{\sigma_{R} \sqrt{L W}}{\mu_{\text {SAMPLE }}}
$$

$$
\sigma_{R}^{2}=\sigma_{R E F}^{2} \bullet \frac{L}{W^{3}}
$$

This strategy significantly reduces the boundary problem associated with the $1 \mu \times 1 \mu$ structure
-but, this approach still has significant problems

Gradient effects will be particularly significant for large cells!
If devices are not really close, other random variations will skew results that are supposed to characterize local random variations

Gradient Effects

How does the ratio matching of two resistors relate to the standard deviation of a single resistor?

$$
\begin{aligned}
& \left\{R \rightarrow \sigma_{R} \text { or } \sigma_{\frac{R}{R_{N}}}\right. \\
& \begin{aligned}
&\left\{R _ { 1 } \left\{\begin{array}{rl}
\left\{R_{2}\right. & \theta \\
= & \frac{R_{1}-R_{2}}{R_{N}} \\
& =\frac{R_{N}+R_{1 R}-R_{N}-R_{2 R}}{R_{N}}
\end{array}\right.\right. \\
& R_{1 N}=R_{2 N}=R_{N}
\end{aligned} \\
& \theta=\frac{R_{1 R}-R_{2 R}}{R_{N}} \\
& \therefore \sigma_{\theta}^{2}=\frac{1}{R_{N}^{2}}\left(\sigma_{R_{1 R}}^{2}+\sigma_{R_{2 R}}^{2}\right) \\
& \nabla_{\theta}^{2}=\frac{2 \sigma_{R_{R}}^{2}}{R_{N}{ }^{2}} \quad \sigma_{\frac{\Delta R}{R_{N}}}^{2}=2 \sigma_{\frac{R}{R_{N}}}^{2}
\end{aligned}
$$

Case 3 Measurement of A_{R}

$$
\begin{aligned}
& \sigma_{\frac{\Delta R}{R_{N}}}=\sqrt{2} \sigma_{\frac{R}{R_{N}}} \\
& \text { Strategy for test structures }
\end{aligned} \quad \mathrm{A}_{\mathrm{R}}=\sqrt{A} \cdot \sigma_{\frac{\mathrm{R}}{R_{N}}}
$$

$A=$ area of one resistor

- large cells but not too big to create nonlinear gradients
- spread a large number of these test structures on a die
- generate $\frac{\Delta R_{1}}{R_{N}}, \frac{\Delta R_{2}}{R_{N}}, \ldots \frac{\Delta R_{k}}{R_{N}}$
- calculate variance of these samples

$$
\hat{\sigma}_{\frac{\Delta R}{R_{N}}}
$$

$$
\widehat{\mathrm{A}}_{\mathrm{R}}=\sqrt{A} \cdot \sigma_{\frac{\mathrm{R}}{}}^{\mathrm{R}_{N}}=\sqrt{A} \cdot \frac{1}{\sqrt{2}} \sigma_{\frac{\Delta R}{R_{N}}}=\sqrt{A} \cdot \frac{1}{\sqrt{2}} \widehat{\sigma}_{\frac{\Delta \mathrm{R}}{}}^{\mathrm{R}_{N}}
$$

Measurement of A_{R}

$$
\left.\begin{array}{rl}
\sigma_{\frac{\mathrm{R}}{\mathrm{R}_{N}}} & =\frac{1}{\sqrt{2}} \sigma_{\frac{\Delta \mathrm{R}}{\mathrm{R}_{N}}} \cong \frac{1}{\sqrt{2}} \hat{\sigma}_{\frac{\Delta \mathrm{R}}{\mathrm{R}_{N}}} \\
\sigma_{\frac{R}{R_{N}}} & =\frac{A_{R}}{\sqrt{A}}
\end{array}\right\} \quad A_{R}=\sqrt{\frac{A}{2}} \hat{\sigma}_{\frac{\Delta \mathrm{R}}{}}^{\mathrm{R}_{N}}
$$

Measurement of A_{R}

What about just taking a large number of resistors at multiple sites on a die, at multiple die locations on a wafer, and and on many wafers an wafer lots:

$$
\left.\begin{array}{l}
\sigma_{\frac{R}{R_{N}}} \cong \hat{\sigma}_{\frac{R}{R_{N}}} \\
\sigma_{\frac{R}{R_{N}}}=\frac{A_{R}}{\sqrt{A}}
\end{array}\right\} \quad A_{R}=\sqrt{A} \hat{\sigma}_{\frac{\Delta R}{}}^{R_{N}}
$$

Stay Safe and Stay Healthy !

End of Lecture 8

